Coronal potential magnetic fields from photospheric sources with finite width

نویسنده

  • R. Oliver
چکیده

Finite width photospheric sources are used to generate coronal potential magnetic field configurations. The prescription of a suitable distribution of the magnetic flux function within such regions allows to solve the Grad-Shafranov equation and, using the superposition principle, to obtain magnetic field configurations related to arbitrary combinations of photospheric sources and sinks. Following this approach, we have focused our attention on bipolar and quadrupolar magnetic configurations in a background horizontal magnetic field, which creates the conditions for complex magnetic field topologies with magnetic X-points and local dips (minima). These configurations, with infinitely thin and point sources, have been previously invoked (Priest et al. 1994; 1996) to explain the process of photospheric flux cancellation (cancelling magnetic features) and prominence formation from photospheric material. We have investigated how the different parameters of the model (i.e. source width and magnetic strength) influence the magnetic field topology and have compared our results to previous ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coronal magnetic fields inferred from IR wavelength and comparison with EUV observations

Spectropolarimetry using IR wavelength of 1075 nm has been proved to be a powerful tool for directly mapping solar coronal magnetic fields including transverse component directions and line-of-sight component intensities. Solar tomography, or stereoscopy based on EUV observations, can supply 3-D information for some magnetic field lines in bright EUV loops. In a previous paper (Liu and Lin, 200...

متن کامل

The correlation of fractal structures in the photospheric and the coronal magnetic field

Context. This work examines the relation between the fractal properties of the photospheric magnetic patterns and those of the coronal magnetic fields in solar active regions. Aims. We investigate whether there is any correlation between the fractal dimensions of the photospheric structures and the magnetic discontinuities formed in the corona. Methods. To investigate the connection between the...

متن کامل

Using the WSA Model to Test the Parker Spiral Approximation for SEP Event Magnetic Connections

In studies of solar energetic (E > 10 MeV) particle (SEP) events the Parker spiral (PS) field approximation, based only on the measured 1 AU solar wind (SW) speed Vsw, is nearly always used to determine the coronal or photospheric source locations of the 1 AU magnetic fields. There is no objective way to validate that approximation, but here we seek guidelines for optimizing its application. We...

متن کامل

Evolution of magnetic fields and energetics of flares in active region 8210

To better understand eruptive events in the solar corona, we combine sequences of multi-wavelength observations and modelling of the coronal magnetic field of NOAA AR 8210, a highly flare-productive active region. From the photosphere to the corona, the observations give us information about the motion of magnetic elements (photospheric magnetograms), the location of flares (e.g., Hα, EUV or so...

متن کامل

Coronal Flux Recycling Times

High-cadence, high-resolution magnetograms have shown that the quiet-Sun photosphere is very dynamic in nature. It is comprised of discrete magnetic fragments which are characterized by four key processes – emergence, coalescence, fragmentation and cancellation. All of this will have consequences for the magnetic field in the corona above. The aim of this study is to gauge the effect of the beh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999